

What, Why & How

# Post Quantum Cryptography



# Shyam Kumar Arshid

- PQC, Hardware security, cloud security at Siemens Technology.
- Previously Cybersecurity Research work at NCLIPC (Govt. of India) and secure embedded systems development at ISRO.

## Definition

Cryptography designed to protect against *attacks* from *quantum* computers, using algorithms that can be implemented on today's *classical* computers.

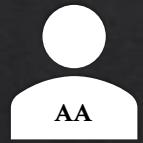
# Risk



Harvest-now, decrypt-later (HNDL) or Store-now, decrypt-later (SNDL)



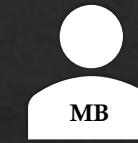
This makes PQC urgent *even before* a big quantum computer exists.




Forward secrecy?

# Encryption: Sharing keys



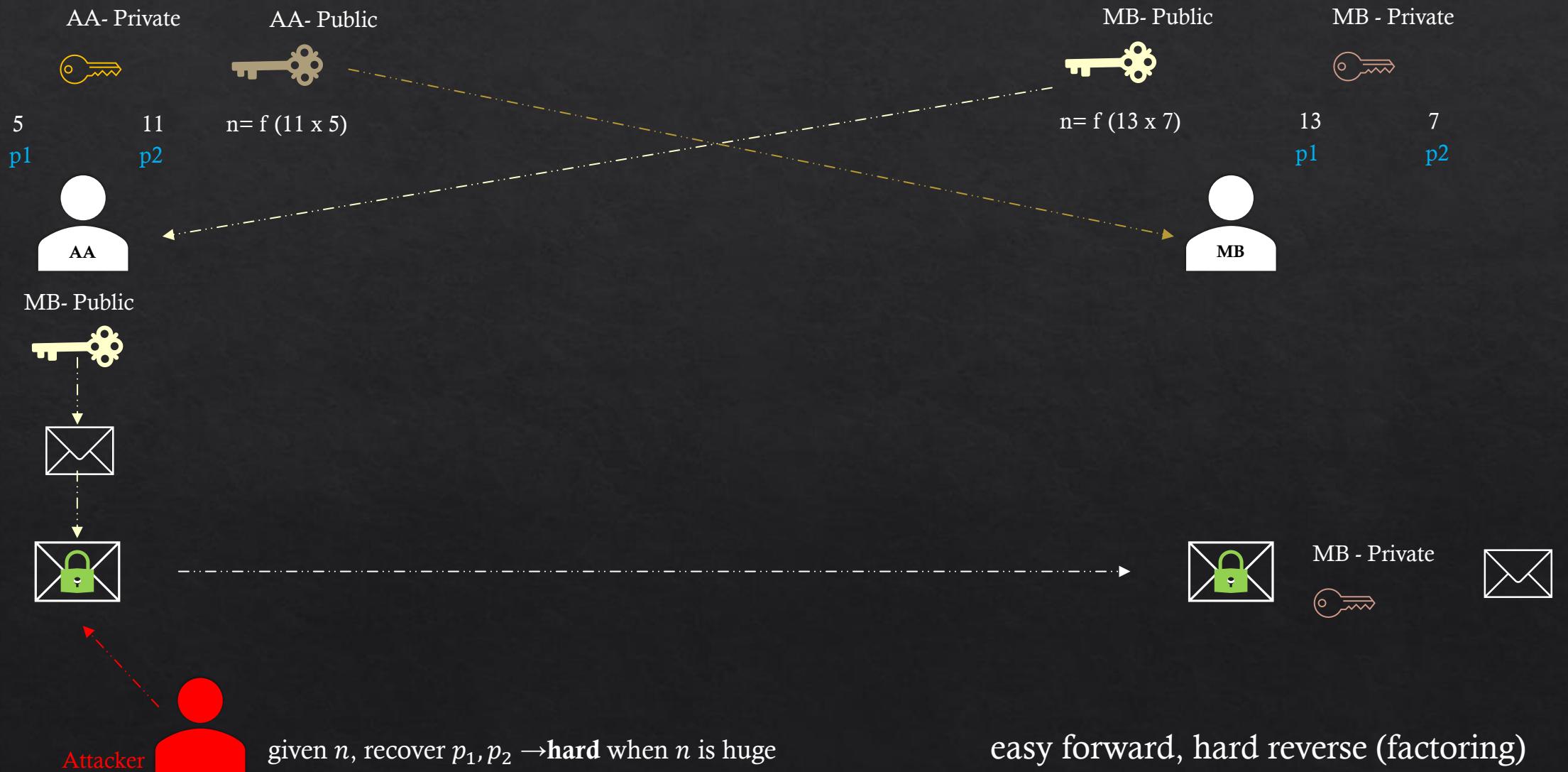

123456



AA



123456




MB



Two unknown persons share secret key physically : only secure option

# Public key cryptography



# TLS capture: Key Share

tls\_1\_3.pcapng 3 kb · 13 packets · [more info](#)

| No. | Time     | Source       | Destination  | Protocol | Length | Info                                                                                                            |
|-----|----------|--------------|--------------|----------|--------|-----------------------------------------------------------------------------------------------------------------|
| 1   | 0.000000 | 172.16.1.117 | 172.16.1.130 | TCP      | 74     | 34152 → 4433 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=269767201 TSecr=0 WS=128                    |
| 2   | 0.009143 | 172.16.1.130 | 172.16.1.117 | TCP      | 74     | 4433 → 34152 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=269762153 TSecr=269767201 WS=128 |
| 3   | 0.010254 | 172.16.1.117 | 172.16.1.130 | TCP      | 66     | 34152 → 4433 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=269767212 TSecr=269762153                                  |
| 4   | 0.010885 | 172.16.1.117 | 172.16.1.130 | TLSv1.3  | 301    | Client Hello                                                                                                    |
| 5   | 0.012012 | 172.16.1.130 | 172.16.1.117 | TCP      | 66     | 4433 → 34152 [ACK] Seq=1 Ack=236 Win=30080 Len=0 TSval=269762156 TSecr=269767212                                |
| 6   | 0.014010 | 172.16.1.130 | 172.16.1.117 | TLSv1.3  | 1139   | Server Hello, Change Cipher Spec, Application Data, Application Data, Application Data, Application Data        |
| 7   | 0.015756 | 172.16.1.117 | 172.16.1.130 | TCP      | 66     | 34152 → 4433 [ACK] Seq=236 Ack=1074 Win=31360 Len=0 TSval=269767217 TSecr=269762158                             |
| 8   | 0.017415 | 172.16.1.117 | 172.16.1.130 | TLSv1.3  | 146    | Change Cipher Spec, Application Data                                                                            |
| 9   | 0.017879 | 172.16.1.117 | 172.16.1.130 | TLSv1.3  | 124    | Application Data, Application Data                                                                              |
| 10  | 0.024132 | 172.16.1.130 | 172.16.1.117 | TLSv1.3  | 321    | Application Data                                                                                                |
| 11  | 0.024250 | 172.16.1.130 | 172.16.1.117 | TLSv1.3  | 321    | Application Data                                                                                                |
| 12  | 0.024500 | 172.16.1.130 | 172.16.1.117 | TCP      | 66     | 4433 → 34152 [FIN, ACK] Seq=1584 Ack=375 Win=30080 Len=0 TSval=269762168 TSecr=269767219                        |
| 13  | 0.025876 | 172.16.1.117 | 172.16.1.130 | TCP      | 66     | 34152 → 4433 [ACK] Seq=375 Ack=1585 Win=35712 Len=0 TSval=269767227 TSecr=269762168                             |

► Signature Algorithm: rsa\_pkcs1\_sha384 (0x0501)  
► Signature Algorithm: rsa\_pkcs1\_sha512 (0x0601)  
▼ Extension: supported\_versions (len=7)  
  Type: supported\_versions (43)  
  Length: 7  
  Supported Versions length: 6  
  Supported Version: TLS 1.3 (draft 28) (0x7f1c)  
  Supported Version: TLS 1.3 (draft 27) (0x7f1b)  
  Supported Version: TLS 1.3 (draft 26) (0x7f1a)  
▼ Extension: psk\_key\_exchange\_modes (len=2)  
  Type: psk\_key\_exchange\_modes (45)  
  Length: 2  
  PSK Key Exchange Modes Length: 1  
  PSK Key Exchange Mode: PSK with (EC)DHE key establishment (psk\_dhe\_ke) (1)  
▼ Extension: key\_share (len=38)  
  Type: key\_share (51)  
  Length: 38  
  ▼ Key Share extension  
    Client Key Share Length: 36  
    ▼ Key Share Entry: Group: x25519, Key Exchange length: 32  
      Group: x25519 (29)  
      Key Exchange Length: 32  
      Key Exchange: 2f350cb6900ab7d5c41b2f60...  
  [JAX Fullstring: 771,4866-4867-4865-255,0-11-10-35-22-23-13-43-45-51,29-23-30-25-24,0-1-2]

▼ Key Share extension  
  Client Key Share Length: 36  
  ▼ Key Share Entry: Group: x25519, Key Exchange length: 32  
    Group: x25519 (29)  
    Key Exchange Length: 32  
    Key Exchange: 2f350cb6900ab7d5c41b2f60...  
  [JAX Fullstring: 771,4866-4867-4865-255,0-11-10-35-22-23-13-43-45-51,29-23-30-25-24,0-1-2]

|      |                         |                         |                 |
|------|-------------------------|-------------------------|-----------------|
| 00e0 | 08 09 08 0a 08 0b 08 04 | 08 05 08 06 04 01 05 01 | .....           |
| 00f0 | 06 01 00 2b 00 07 06 7f | 1c 7f 1b 7f 1a 00 2d 00 | ...+.....       |
| 0100 | 02 01 01 00 33 00 26 00 | 24 00 1d 00 20 2f 35 0c | ...3.&,\$.. /5. |
| 0110 | b6 90 0a b7 d5 c4 1b 2f | 60 aa 56 7b 3f 71 c8 01 | ...../.V{?q..   |
| 0120 | 7e 86 d3 b7 0c 29 1a 9e | 5b 38 3f 01 72          | ~....)...[8?.r  |

# X25519: Elliptic Curve Diffie-Hellman key exchange

- ❖ **RSA**: “hard = factoring  $n = p_1 p_2$ ”
- ❖ **X25519** : “hard = discrete log on an elliptic-curve group: find  $k$  such that  $Q = kP$ ”
- ❖ **The field size** (where all arithmetic happens)

Curve25519 uses prime :  $p = 2^{255} - 19$

- ❖ How many points / how big the search space is :  $2^{252}$
- ❖ Private key is essentially choosing a scalar in a space around  $2^{252}$
- ❖ **Attacker's goal** : given  $P$ (base point) and  $Q$ (public key), find  $k$
- ❖ **Brute force**: try  $k = 1, 2, 3, \dots$  until  $kP = Q$  ( $\dots 2^{252}$ )
- ❖ Best known generic attack still needs  $\sim 2^{126}$  tries



Number of operations/tries

85070591730234615

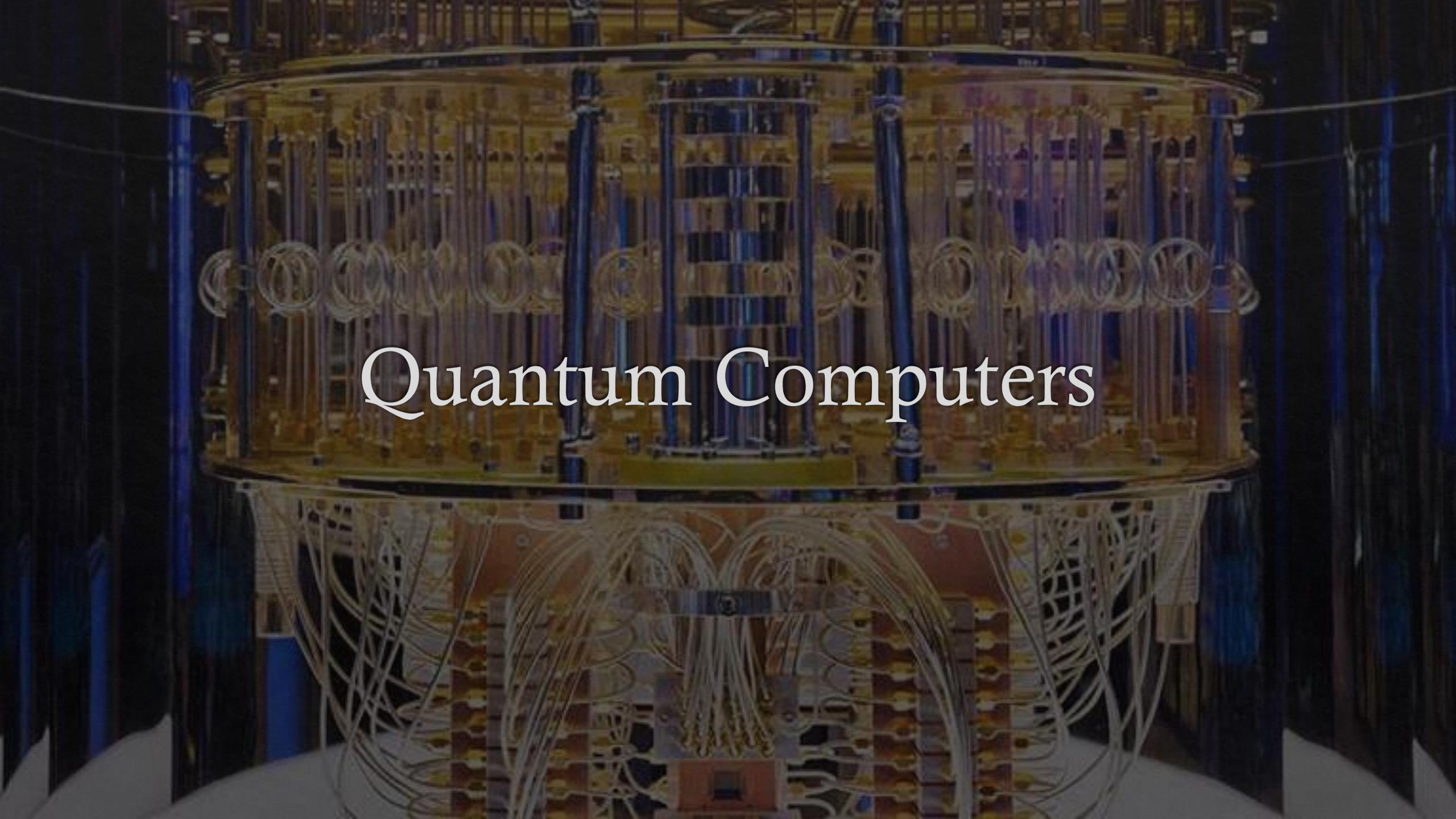
86584365185794205

2864

Try = one group-step in best generic attack ( $\approx$  point add/double)

# Most powerful classical supercomputer: EL Capitan




$\sim 2.8 \times 10^{18}$  ops/sec

$\approx$  500k laptops

# Time required to break ECC

- ◆  $9.5 \times 10^{11}$  years using El Capitan

$\approx$  1 trillion years

A photograph of a large-scale quantum computing system. The central component is a large, cylindrical vacuum chamber with a complex internal structure. Numerous optical fibers and cables are visible, many of which are color-coded (blue, orange, red) and bundled together. The system is housed in a dark, industrial-looking enclosure with various ports and equipment visible around the perimeter.

# Quantum Computers

# Fundamental changes with a quantum computer

---

Use of **quantum physics** to access new computational abilities.

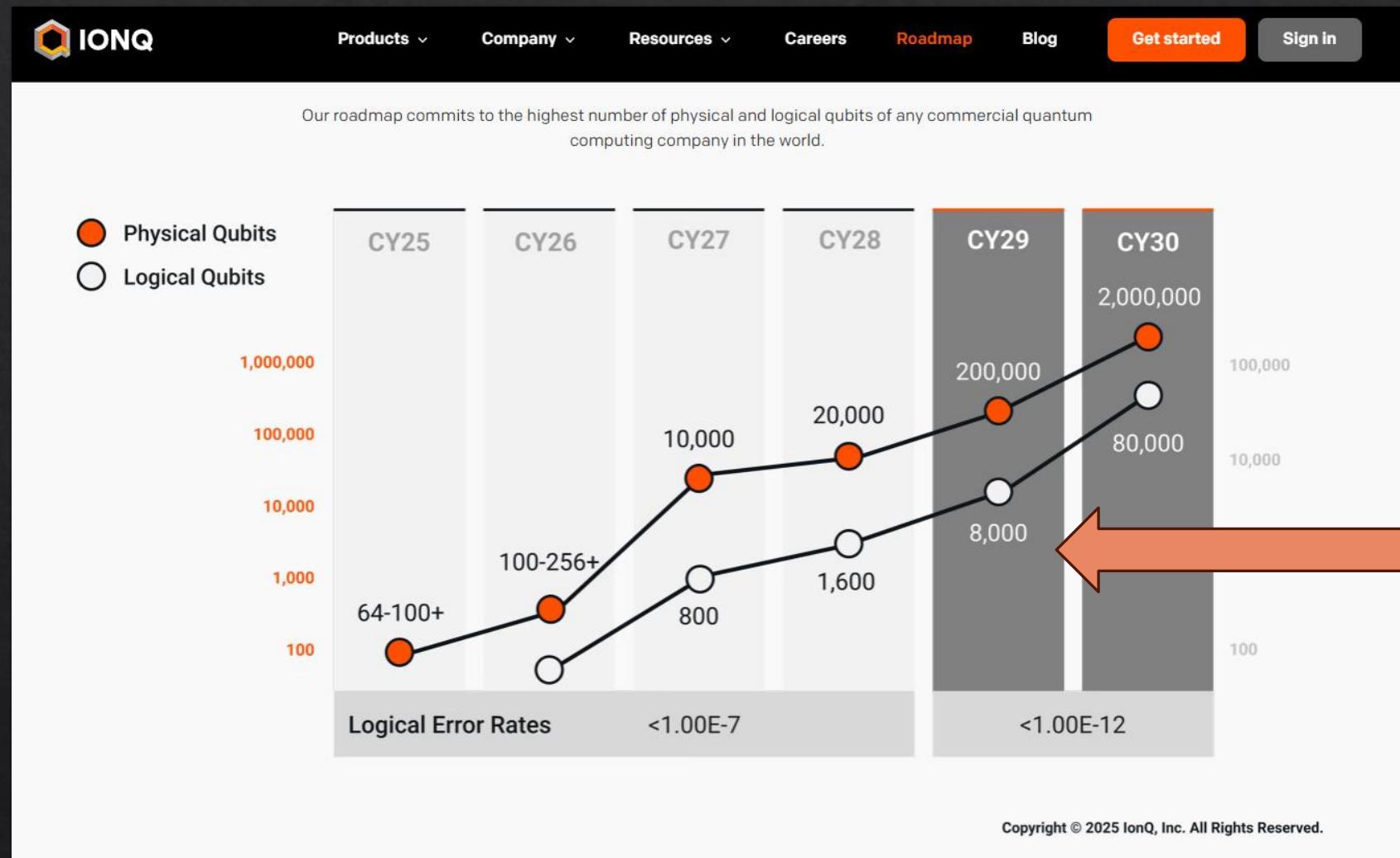
---

Made of quantum bits (qubits) instead of bits.

---

Qubits can be in a superposition, or a complex combination, of both 0 and 1.

---


**Shor's algorithm**, solves **discrete logs** efficiently on a fault-tolerant quantum computer.

# Time required to break ECC-256 with quantum computer

- ❖ Using a QC with 50 million Toffoli gates ( $\sim$ 6,000 logical qubits)

$\approx$  10 minutes

# Roadmaps target early 2030s+



# Post-Quantum Cryptography algorithms (NIST)

- ❖ NIST finalized the first **PQC** standards (Aug 13, 2024) : resist quantum attacks, runs on classical computers.
  - ❖ **ML-KEM (key establishment)** → replaces **(EC)DHE / RSA key transport**
  - ❖ **ML-DSA (signatures)** → replaces **RSA / ECDSA**
  - ❖ **SLH-DSA (hash-based signatures)** → alternative to **RSA / ECDSA**



# ML-KEM

- ❖ **ML-KEM (FIPS 203)** is a module-lattice KEM.
- ❖ Depends on hardness of **Module Learning With Errors (Module-LWE / MLWE)**: you see “almost-linear equations,” but with **small random noise** added, and you must recover the secret.

“ECC hides the secret as a scalar on a curve; ML-KEM hides it as a noisy point in a high-dimensional lattice.”




Image source: Veritasium

# ECC vs ML-KEM

- ❖ ECC/RSA have a clean **periodic** structure under the hood; quantum Fourier analysis can ‘read out’ that period.
- ❖ Shor algorithm wins when the math is *perfectly structured*. LWE intentionally injects *small randomness*, so the structure is blurred.

# PQC in Real World



- ❖ **Web browsing (TLS/HTTPS):** major stacks already use **hybrid key exchange** (classical X25519 + ML-KEM). Ex: Cloudflare



- ❖ **Browsers:** Chrome has been actively deploying hybrid PQ key exchange for HTTPS.



- ❖ **SSH:** OpenSSH has offered **post-quantum key agreement** by default since 9.0.



- ❖ **Messaging apps:** Signal & iMessage



# PQC Job opening

This is already a hiring skill

HSBC

Explore Careers Candidate login Contact Us Feedback FAQs Join talent network English ▾

Post-Quantum Cryptography&Quantum Key Distribution(QKD) Engineer / Senior Consultant Specialist

Pune, Maharashtra, India • Bangalore, Karnataka, India • Hyderabad, Telangana, India

[View Less](#)

Hybrid

Job Description

|                          |                             |                                |
|--------------------------|-----------------------------|--------------------------------|
| Job ID<br>20548          | Work Style<br>Hybrid Worker | Brand<br>HSBC                  |
| Department<br>Technology | Job Type<br>Full Time       | Date Posted<br>08 January 2026 |

Apply By  
13 January 2026

<https://portal.careers.hsbc.com/careers/job/563774608798825>

Thank you